Höflein a/d Donau
Contents
Metadata
StationId: at_hoeflein-lms-zehn-LP22_3 S/N Lightmeter: 908022.????
Position:
Decimal degree: 48.351425 N 16.263772 O
North 48° 21' 5.13"
East 16° 15' 49.58"
exact elevation unknown, assuming 180m
Name: Privatsternwarte Höflein a/d Donau,
Höflein a/d Donau
bis Nov. 2019: StationId: AT_KLOSTERNEUBURG_1 S/N Lightmeter: 908031.1438
Wartungen
2019-11-28 Neueinrichtung at_hoeflein-lms-zehn-LP22_3 MR
Vorbereitung der Installation LP22 (Mark 2.3l) mit Lichtstation auf Trekstore "Surfbook" Läuft seit 2019-12-04;
Erste Mond-Winterkalibration; rms 13%:
kali=X.fit_em1_to_natLight(JD_select=SJD, plot_select=True) Fit: a,b,c,x0,d,: 1.883e+05,1.972e-03,5.452e-06,1.860e-02,9.601e-03, (res2/(N-n-1))^1/2 = 0.128 ,N=66080,n= 5 a 1.8832e+05 +/- 5.3988e+02 b 1.9720e-03 +/- 6.8965e-05 c 5.4519e-06 +/- 7.5584e-09 x0 1.8598e-02 +/- 1.6280e-04 d 9.6008e-03 +/- 8.4798e-05
2017-07-05 Felix
1.) Ich hab den Stick jetzt geleert (Wir dürften seit Herbst'16 keinen Platz mehr gehabt haben.) 2.) Ich hab die Netzwerkverbindung wieder hergestellt - jetzt haben wir auch wieder Zeit.
=> Die Interne Uhr ist heute ziemlich exakt zwei Monate (und ein paar Stunden) nachgegangen.
Letzte Info, bevor ich die Zeit repariert hab: 4. Mai 2017 07:45 UTC (Router intern) entspricht 4. Juli 2017 10:30 UTC (Echtzeit)
Diese Angabe ist mit einer Unsicherheit von etwa 20min zu verstehen, da ich dazwischen noch das Netzwerk aufgepäppelt hab.
Kalibrationen
2020 neue Station
DS=1
In [25]: X=lies_Verzeichnis('/Daten/Licht/Daten/at_hoeflein-lms-zehn-LP22_3/' , timezone=0, Datenschritt=1) In [26]: X.Strom=X.median_Strom(121) In [27]: kali_Hoe=fit_daily(X, chi_max=0.2, quiet=False) === fit_daily_Kalibrationen_at_hoeflein-.log <ephem.Observer date='2020/3/12 17:05:42' epoch='2000/1/1 12:00:00' lon='11:42:40.2' lat='50:58:48.4' elevation=341.0m horizon=0:00:00.0 temp=15.0C pressure=0.0mBar> Using standard pressure corrected for height: 979.3 [hPa] Using Observer.temp as T_dew 15.0 [C] Total radiation model: P = 979.3 [hPa] T_dew = 15.0 C. plot-Error. Solar/Lunar data may be missing. Try: x.Berechne_Sonne(), x.Berechne_Mond(). Vormi: 2019-12-06 5476 1 8.94e+04, 5.98e-09, 2.33e-07, 1.59e-04, -1.37e-03, n.def. 0 | 0.101 [0.00051, 30] -3e-05
Typ Datum n status a b c x0 d f n_f | chi' range max Moon [%]
fit_em1_to_Natlight: Error storing Kalibration into self.last_calibration. fit_em1_to_Natlight: Error storing Kalibration into self.last_calibration. Vormi: 2019-12-07 5487 1 1.06e+05, 5.78e-07, 2.14e-07, 3.55e-04, -5.11e-03, n.def. 0 | 0.150 [0.00051, 30] -4e-05 Vormi: 2020-03-05 18044 1 9.06e+04, 3.89e-09, 5.91e-07, 2.03e-04, 3.19e-03, n.def. 0 | 0.165 [0.00051,5.4e+04] 1e-05
i Datum chi' c f 0 2019/12/6 04:5 1.021e-01 2.330e-07 +/- 5.130e-10 (0.002 Dx/x) Fehler 1 2019/12/7 05:0 1.487e-01 2.143e-07 +/- 7.179e-10 (0.003 Dx/x) Fehler 2 2020/3/5 03:58 1.582e-01 5.908e-07 +/- 2.044e-09 (0.003 Dx/x) Fehler
In [16]: kali_Hoe=fit_daily(X, chi_max=0.2, quiet=False)
=== fit_daily_Kalibrationen_at_hoeflein-.log
<ephem.Observer date='2020/3/12 16:52:33' epoch='2000/1/1 12:00:00' lon='16:15:49.6' lat='48:24:05.1' elevation=180.0m horizon=0:00:00.0 temp=15.0C pressure=0.0mBar>
Using standard pressure corrected for height: 995.2 [hPa]
Using Observer.temp as T_dew 15.0 [C]
Total radiation model: P = 995.2 [hPa] T_dew = 15.0 C.
Vormi: 2020-03-05 346 1 1.41e+05, 1.77e-05, 1.38e-05, -1.02e-02, 2.89e-03, 102.3 81 | 0.120 [0.00051,5.9e+04] 2e-05
Typ Datum n status a b c x0 d f n_f | chi' range max Moon [%]
i Datum chi' c f 0 2020/3/5 03:44 1.136e-01 1.379e-05 +/- 2.216e-07 (0.016 Dx/x) 102.3
--GW (talk) 17:57, 12 March 2020 (CET)
Kalibration, Apr. '11
x=lies_Verzeichnis('/home/lightmeter1/Desktop/LIGHT/athöflein2011-08-24/', Datenschritt=20, timezone=2); x.Observer.elev=180; x.Observer.lat="48:21:5.13"; x.Observer.long="16:15:49.58"; # Höflein (elevation is just best guess) x.Berechne_Sonne(); x.Berechne_Mond() ssh1=(x.Sunheight_deg_from_JD(x.JD)>30)|((x.Sunheight_deg_from_JD(x.JD)<0)&(x.Sunheight_deg_from_JD(x.JD)>-18)) sjd1=(x.JD>mx.DateTime.DateTime(2011,4,10,2,8,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,10,7,10,0).jdn); sjd2=(x.JD>mx.DateTime.DateTime(2011,4,23,17,40,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,23,20,0,0).jdn); sjd3=(x.JD>mx.DateTime.DateTime(2011,3,30,2,55,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,3,30,7,10,0).jdn); sjd4=(x.JD>mx.DateTime.DateTime(2011,4,7,12,31,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,7,14,44,0).jdn); sjd5=(x.JD>mx.DateTime.DateTime(2011,4,3,2,22,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,3,6,48,0).jdn) sjd6=(x.JD>mx.DateTime.DateTime(2011,3,30,10,0,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,3,30,11,0,0).jdn); sjd7=(x.JD>mx.DateTime.DateTime(2011,4,12,3,0,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,12,4,0,0).jdn); sjd8=(x.JD>mx.DateTime.DateTime(2011,4,23,8,0,0).jdn) &(x.JD<mx.DateTime.DateTime(2011,4,16,0,0,0).jdn); sjd9=(x.JD>mx.DateTime.DateTime(2011,4,22,8,5,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,22,16,10,0).jdn) sjd10=(x.JD>mx.DateTime.DateTime(2011,4,22,5,35,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,22,7,40,0).jdn) sjd11=(x.JD>mx.DateTime.DateTime(2011,4,23,5,35,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,23,16,10,0).jdn) sjd12=(x.JD>mx.DateTime.DateTime(2011,4,21,8,0,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,21,16,10,0).jdn) sjd13=(x.JD>mx.DateTime.DateTime(2011,4,21,18,0,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,21,19,0,0).jdn) sjd14=(x.JD>mx.DateTime.DateTime(2011,4,10,5,30,0).jdn) & (x.JD<mx.DateTime.DateTime(2011,4,10,7,10,0).jdn) SELECT=(sjd1|sjd2|sjd3|sjd4|sjd5|sjd6|sjd7|sjd8|sjd9|sjd10|sjd11|sjd12|sjd13|sjd14)&ssh1 x.fit_em1_to_natLight(JD_select=SELECT, Lux_range=[0.00001,300000]); Fit: a,b,c,x0,d,: 1.249e+05,2.752e-02,2.495e-07,-3.201e-03,5.198e-03, (res2/(N-n-1))^1/2 = 0.153 ,N=5855,n= 5 a,b,c,x0,d= 1.249e+05,2.752e-02,2.495e-07,-3.201e-03,5.198e-03 x.plot_Sunlight_Watt_per_square_meter_from_JD_DM(surface_pressure=996.0, T_dew_C=7.0, factor=108.9, c='c', marker=',' , linestyle=':') x.set_simple_time_axis_format() legend(prop=matplotlib.font_manager.FontProperties(size='small'),loc='center left')
a , b , c , x0 , d = 1.249e+05 , 2.752e-02 , 2.495e-07 , -3.201e-03 , 5.198e-03 #hier c_Lux! f=108.9
Für die obigen Koeffizienten ergab sich beim Fit ein Fehler von 0.15, nachstehend ein Koeffizienten-Satz mit Fehler 0.11, allerdings schlechterer Berücksichtigung der Nächte.
a , b , c , x0 , d = 1.241e+05 , 2.278e-02 , 2.821e-07 , -3.743e-03 , 5.128e-03 #c_Lux!
--Nero2401 22:36, 4. Sep. 2011 (UTC)
Grobkalibration, nur 22. April
Vergleichswerte: Fit: a,b,c,x0,d,: 1.233e+05,5.357e-02,1.346e-07,-2.526e-02,4.998e-03, (res2/(N-n-1))^1/2 = 0.142 ,N=21661,n= 5 ganze Schönwetterperiode Fit: a,b,c,x0,d,: 1.207e+05,1.745e-01,2.814e-08,-2.571e-03,5.135e-03, (res2/(N-n-1))^1/2 = 0.587 ,N=254821,n= 5
Grob-Kalibration (outdated)
a,b,c,x0,d=1.691e+05,6.343e-01,4.186e-07,-1.068e-02,6.892e-03 #(res2/(N-n-1))^1/2 = 0.243 ,N=765,n= 5, L031 Hoeflein
a,b,c,x0,d=1.691e+05,6.343e-01,3.8759e-09,-1.068e-02,6.892e-03 #(res2/(N-n-1))^1/2 = 0.243 ,N=765,n= 5, L031 W/m2 Hoeflein